Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli.

نویسندگان

  • Tobias Fuhrer
  • Lifeng Chen
  • Uwe Sauer
  • Dennis Vitkup
چکیده

Although NAD(+)-dependent succinate semialdehyde dehydrogenase activity was first described in Escherichia coli more than 25 years ago, the responsible gene has remained elusive so far. As an experimental proof of concept for a gap-filling algorithm for metabolic networks developed earlier, we demonstrate here that the E. coli gene yneI is responsible for this activity. Our biochemical results demonstrate that the yneI-encoded succinate semialdehyde dehydrogenase can use either NAD(+) or NADP(+) to oxidize succinate semialdehyde to succinate. The gene is induced by succinate semialdehyde, and expression data indicate that yneI plays a unique physiological role in the general nitrogen metabolism of E. coli. In particular, we demonstrate using mutant growth experiments that the yneI gene has an important, but not essential, role during growth on arginine and probably has an essential function during growth on putrescine as the nitrogen source. The NADP(+)-dependent succinate semialdehyde dehydrogenase activity encoded by the functional homolog gabD appears to be important for nitrogen metabolism under N limitation conditions. The yneI-encoded activity, in contrast, functions primarily as a valve to prevent toxic accumulation of succinate semialdehyde. Analysis of available genome sequences demonstrated that orthologs of both yneI and gabD are broadly distributed across phylogenetic space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two succinic semialdehyde dehydrogenases are induced when Escherichia coli K-12 Is grown on gamma-aminobutyrate.

When Escherichia coli K-12 was grown on gamma-aminobutyrate, a second succinic semialdehyde dehydrogenase, dependent upon oxidized nicotinamide adenine dinucleotide or oxidized nicotinamide adenine dinucleotide phosphate and distinct from that induced by gamma-aminobutyrate, was gratuitously induced by succinic semialdehyde.

متن کامل

Cloning and expression of the Escherichia coli K-12 sad gene.

The Escherichia coli K-12 sad gene, which encodes an NAD-dependent succinic semialdehyde dehydrogenase, was cloned into a high-copy-number vector. Minicells carrying a sad+ plasmid produced a 55,000-dalton peptide, the probable sad gene product.

متن کامل

The X-Ray Crystal Structure of Escherichia coli Succinic Semialdehyde Dehydrogenase; Structural Insights into NADP+/Enzyme Interactions

BACKGROUND In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and gamma-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. I...

متن کامل

SIGNIFICANT CHANGES IN THE ACTIVITY OF GABATRANSAMINASE AND SUCCINATE SEMIALDEHYDE DEHYDROGENASE OF MOUSE HYPOTHALAMUS FOLLOWING PERIPHERAL INJECTION OF CHOLECYSTOKININ-8 AND/OR CAERULEIN

The activities of 4-aminobutyric-2-oxoglutaric acid transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) were determined in mouse hypothalamus after peripheral injections of cholecystokinin-8 (CCK-X)and/or caerulein (CLN). GABA transaminase activity was measured utilizing endogenous succinate semialdellyde dehydrogenase to convert the product of GAB A-T, succinate semiald...

متن کامل

A mitochondrial NADP+-dependent reductase related to the 4-aminobutyrate shunt. Purification, characterization, and mechanism.

Succinic semialdehyde reductase, a NADP+-dependent enzyme, was purified from whole pig brain homogenates. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Succinic semialdehyde reductase (Mr 110,000) catalyzes the reduction of succinic semialdehyde to 4-hydroxybutyrate. The equilibrium constant of the reaction is Keq = 5.8 X 10(7) M-1 at p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 22  شماره 

صفحات  -

تاریخ انتشار 2007